PROPERTIES OF PASTE AND MOTRAR MIXTURES CONTAINING SLAG AND SILICA FUME

BY
E. A. El – Kassby, R. A. S. Mohamed,
G. E. Khalil, I. N. Metwali

Bulletin of The Faculty of Engineering
Minia University

Vol. 17 No. 2 Dec. 1998

PROPERTIES OF PASTE AND MORTAR MIXTURES CONTAINING SLAG AND SILICA FUME

BY

E. A. El-Kassby*, R. A. S. Mohamed**, G. E. Khalil***, I. N. Metwali****

ABSTRACT:-

In recent years number of organization in Europe have become increasingly involved in research aimed at energy conservation in the cement and concrete industry. This, in part, is being accomplished by encouraging the use of cementitious materials such as fly ash, slag and pozzolans. Lately, some attention has been given to the use of the pozzolans, silica fume, as a possible partial replacement for portland cement. Certainly, that our earth planet is subjected to pollution hazards as a result of the advance of technology in metalurgical industries, for instance, in Egypt, It is found, the Egyptian ferroalloys and Egyptian Iron and steel companies (Edfu-Aswan & Helwan) they suffer from bounteous of silica fume and granulated blast furnace slag successively. Thereby the accumulation of silica fume and slag every year in these plants without being used represents not only a significant loss of money and energy by occupying a big area from these plants but also a negative impact to the environment.

This paper studied the usage of granulated blast-furnace slag as a ground material (% passing from size # 45um = 0.85 %, i. e. specific surface area = 2500 cm $2 \mid \text{gram}$) with combination of silica fume in cement paste and mortar mixtures as a partial replacement for cement. This study shows that with increasing the silica fume percentage and decreasing the GGBF slag percentage, the water demand to produce the standard consistence of cement paste is sharply increased and the initial and final setting times of the paste mixtures reduced.

INTRODUCTION:-

The water demand of mortar and concrete incorporating silica fume increases with increasing amounts of silica fume. For example, at 30 percent replacement by weight of cement, for concrete with a water cement ratio of 0.64 the water demand has been found to

increase by almost 30 percent 1. In order to maximize the full strength-producing potential of silica fume in concrete it should awalys be used together with a water reducer, preferably with a HRWR (High Rang Water Reducing admixture). The dosage of the HRWR will depend

^{*} Prof. Dr., Head of civil Engineering Techonology department in B. H. I. T., Egypt.

^{**} Lecturer. Civil Eng. Dept., Faculty of Engineering, Minia University, Minia, Egypt.

^{***} Lecturer, Civil Eng. Dept, in B. H. I. T., Egypt

^{****} Civil Eng., Egypt.

Upon the percentage of silica fume and the type of HRWR used 2. Silica fume with high range water reduces has been used to produce very high strength concrete. This type of concrete incorporates large percentages of silica fume and very high dosages of HRWR, resulting in concrete having very low permeability and high compressive strength 3.

The mortars and concretes incorporating silica fume are less permeable. It has shown that this due to a decrease in the number of coarse pores of the cement-silica fume paste system 4.

Silica fume concrete is less permeable because silica fume is a very fine siliceous material that reacts with the lime liberated during the hydration of portland cement and forms stable cementitious products. As a result, very small pores and an improved aggregate to paste interface are formed in concretes with silica fume, this leads to lower permeability and improved concrete strength 5.

In this paper, the various properties of paste and mortar mixtures such as, water demand, initial setting time, final setting time, sounds and compressive strength were discussed in order to show the best rang of combination of ground granulated blast furnace slag and silica fume as a partial replacement of ordinary portland cement from the point of view of Egyptian standard Specifications and explain the effect of combination of cement.

EXPERIMENTAL PROGRAMME:-

The type of slag used in this study was ground granulated blast furnace slag (GGBF slag) was provided from the Egyptian Iron and steel CO. (Helwan). Table 1. shows the chemical analysis of this used slag with comparing to ASTM C989-89 limits and physical properties such as,

fineness, surface area, specific gravity and slag activity index for evaluating the strength grade of the used slag, the slagactivity index was determined according to ASTM C989-89 6. Silica fume used in this paper was provided from the Egyptian (Edfu-Aswan), Ferroallovs CO. chemical analysis and physical properties of the used silica fume were completed by the laboratories of the Egyptian ferroalloys CO. as shown in table 2. The cementitious materials content (cement + GGBF slag + silica fume) assumed to take a constant value through this paper as shown in table

The properties of the various combination of ordinary portland cement, GGBF slag and silica fume were determined by carrying out the water demand, initial and final setting times, soundness and compressive strength tests according to ASTM C 187-83 3, ASTM C 191-827, BS: 12: 1985 8 and BS: 8110: 1986 3. The test plan (flow chart) for experimental work and tests which were carried out on the paste and mortar of the combinations of cementitious materials used is given in fig 1.

TEST RESULTS AND DISCUSSIONS:-

The results of the water demand percentage for the mixtures of cement, GGBF slag and silica fume to determine consistence of standard cementitious materials paste are indicated in table 4. It is observed that when we increase the percentage of silica the water demand to fume increase. determine the consistence of standard paste is increased. Inversely, with increasing the percentage of GGBF slag, the water demand to determine the consistence of standard paste is decreased. It is found that, with increasing the percentage of silica fume from 3% to 7%, the water demand will be increased, for example, at 6% cement, the water demand of M8 (60|35|5)

equals 32% is less than M9 (60|33|7) that equals 35% (increment of water demand for M9 equals 9.4% comparing to M8 as a result of increasing the percentage of silica fume from 5% to 7%. It also evident that the water demand percent of all mixes fall within the Egyptian Standard Specifications limits (min. 25% and max. 30%) except mixes No. 3, 8 and 9.

Tables 5 and 6 show the results of setting times for the various paste mixtures. From the previous tables, it is evident that the addition of 7% silica fume to 93% cement (M3) in the paste reduces both initial and setting times by 70 minutes approximately about M1 (100% cement). Reduction in initial and final setting times equal -46.7 % and 36.4% respectively comparing to M1. And the addition of 50% GGBF slag to 50%cement M2 increases both initial and final setting times by 50 minutes approximately about M1. Increment in initial and final setting times for M2 equal + 33.3 % and +27.3 % respectively comparing to M1. For another mixes, it is clear that with increasing the percentage of silica fume from 3% to 7% and decreasing the percentage of GGBF slag, the setting times will be reduced. The decrement in the setting times by addition of silica fume can be explained by taking into account the effect of fine particle size on the hydration process. Owing to their small size, silica fume particles fill the interstices of the cement particles and act as nucleation sites for the hydration and thus accelerate the rate of cement hydration similarly, the increment in the setting times by addition of GGBF slag can be explained by taking into account the effect of large particle size of GGBF slag comparing to silica fume and cement particles and hence reduced surface area of GGBF slag which causes it to hydrate slowly in the presence alkaline solution formed by dissolution of cement particels during the hydration of cement, therefore an

extension in setting times will occur. Finally, it could be found that the setting times of all mixes fall within the Egyptian Standard Specifications limits (min 45 minutes for initial setting time and max. 10 hours for final setting time.).

Table7 shows the results of the soundness for the various paste mixtures. The results show that the soundness of the pastes are nearly constant regardless of percentages of GGBF slag and silica fume. by another meaning GGBF slag and silica fume have no effect in raising the soundness of the paste, this is referred that the percentage of CaO, MgO and sulfates in GGBF slag and silica fume which raising the soundness are fall below the maximum permissible limits. It could be also found that the soundness of all mixes within the Egyptian Standard Specifications limit (less than 10 mm).

Table 8. and table 9. show the results of cube compressive strength for the various mortar mixtures at 3 days and 7 days. From tables {8. & 9.}, it evident that the highest mortar cube compressive strength at 3 and 7 days are 227 and 335 Kg|cm2 throughout the all mixes. These strengths were developed by M3 (93% cement + 7%silica fume) this mix recorded the highest rates of increment of compressive strength comparing to M1(100% cement) equal 2.3 % and 9.6% at 3 and 7 days respectively. The lowest compressive strength through the six mixes combination of cement, GGBF slag, and silica fume was obtained by M4 (50% cement + 47% GGBF slag + 3% silica fume) that it contains a lower amount of cement and lowest amount of silica fume, its strengths are 136.5 and 219 Kg|cm2 at 3 days and 7 days, this mix recorded the highest rates of decrement of compressive strength comparing to M1 (through the six mixes of combinations of cementitiousmaterials used) equal 38.5 % and 28.4 % at and 7 days respectively. It is evident

from the tables (4-5) and (4-6) the mixes which their compressive strengths cover the Egyptian specifications limits are M1 and M3, this does not mean that the other mixes are rejected or low-grade mixes be possibility of because there will increasing of their strengths at later ages. Finally, it could be said that the mixes no. 7, 8 and 9 recorded the satisfactory values of mortar cube compressive strength comparing to other mixes, or by other meaning, the best range of combination of ground granulated blast - furnace slag and silica fume that gives high compressive strength is as much as 37 % GGBF slag and as low as 3% silica fume with 60% ordinary portland cement.

CONCLUSIONS:-

When ordinary portland cement is partially replaced with a combination of ground granulated blast - furnace slag (GGBF slag) and silica fume to get a cementitious - materials paste and mortar, the following effects had been observed:

1- With increasing the percentage of silica fume from 3% to 7% and decreasing the amount of GGBF slag, the water demand to maintain the consistence of standard paste is sharply increased. Mix no.3 (93|0|7) that contains 93% cement with 7% suica fume (maximum amount of silica fume) recorded the highest rate of increment of water demand (through the all mixes) is +57.7 % comparing to control mix M1 (100 % (60|33|7) that contains M9 cement). maximum amount of silica fume (7%), minimum amount of GGBF slag (33%) with 60 % cement attained the highest rate of increment of water demand (through the six mixes of combinations of cementitious materials used) is + 34.6 % comparing to M1 (100 cement). The highest rate of decrement of water demand (through the all mixes) realized by M2 (50|50|0) which contains maximum amount of GGBF slag 50% with 50 % cement is - 7.7% comparing to M1(100% cement).

With increasing the silica percentage form 3% to 7% and decreasing the amount of GGBF slag, the initial and final setting times reduced, M3 (93|0|7) recorded the highest rates of decrement of initial and final setting times (through the -30% and -27.3% mixes) are (100 comparing to M1 respectively cement). M2 achieved the highest rates of increment of initial and final setting times (through the all mixes) are 33.3 % and 27.3 % respectively comparing to M1.

3- There is no effect of free lime in GGBF slag and silica fume on blended cement paste, because the soundness of the all pastes is to be constant nearly and range from 2 to 3 mm regardless of the percentage of combination GGBF slag and silica fume.

4- With increasing the silica fume percentage from 3 % to 7 % in mortar and decreasing the amount of GGBF slag, the early compressive strength at 3 and 7 days increased. M3 (93|0|7) recorded the highest rates of increment of compressive strength at 3 and 7 days(through the all mixes) equal 2.3 % and 9.6 % respectively comparing to M1 (100 % cement). M9 (60|33|7) attained the lowest rates of decrement of compressive strength at 3 and 7 days (through the six mixes) equal -24% and -14.9% respectively comparing to M1 (100 % cement).

5- The best rang of combinations of GGBF slag and silica fume that satisfies with high degree for requirements of Egyptian Standard Specifications is as much as 37 % GGBF slag and as low as 3% silica fume with 60% cement.

REFERENCES:-

- 1- Carette, Georges G., and Mathotra, V. Mohan., "Mechanical Properties, Durability, and Drying Shrinkage of Portland Cement Concrete Incorporating Silica Fume." Cement, and Aggregates, V.5, No. 1 PP. 3-13, Summer 1983.
- 2- Malhotra, V. M. Editor, "Fly Ash, Silica Fume, Slag and other Mineral By-Products in Concrete", Sp-79 ACI, Detroit, 1196 pp., 1983
- 3- ACI Committee 226. "Silica firme in Concrete"
- 4- Mehta, P. K., and Girv, O. E., "Properties of Portland Cement Concrete Containing Fly Ash and Condensed Silica Fume", Cement and Concrete Research, V. 12, No. 5, PP. 587-595, Sep. 1982.
- 5- Celik Ozyildirim, "Laboratory
- Investigation of low - Permeability Concretes Containing Slag and Silica fume", ACI Material Journal, March 1994. 6- ASTM, 1989. "Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars" ASTM C 989-89, 1989 Annual Book of ASTM Standard, Vol. 04.02, PP. 485-489, 1989. American Society for Testing and Materials: "Cement, Lime, Gvpsum" Manual book of ASTM Standard. philadilphia: American National Standards section 4 vol. 0.4.01, 1984 8- British Standard Institution Methods of Testing of concrete, BS, 1981, parts 1-5, London: British Standard Institute, 1970. 9- ACI Committee 226, IR - 87, " Ground

Granulated Blast Furnace Slag as a cementititious Constituent in Concrerte".

Table 1 Chemical analysis and physical properties of ground granulated blast furnace slag.

% Test results 1903 34.05 1035 13.35 1003 1.19 200 37.2 120 4.54 120 1.44 130 1.44 130 1.44 130 0.10 140 0.10 200 0.10 220 3.95 130 1.01 140 2500 150 2500 160 2.9 260 2.0	Description of test		
(SiO ₂) 34.05 (Al ₂ O ₃) 13.35 (Fe ₂ O ₃) 11.19 (CaO) 37.2 (CaO) 37.2 (CaO) 37.2 (S) 1.44 (S) 1.44 (SO ₃) 0.0 e (Mn O) 2.92 (Ma ₂ O) 0.10 e (K ₂ O) 0.10 e (K ₂ O) 3.95 (BaO) Test results S: sssing) % 85 ea: cm ² /gm) 2500 avity 2.9 days 70.2	1-Chemical analysis,%	Test results	ASTM C98-89 limits
(Al ₂ O ₃) 13.35 (Fe ₂ O ₃) 1.19 (CaO) 37.2 (S) 1.44 (S) 1.44 (SO ₃) 0.0 e (Mn O) 2.92 (Ma ₂ O) 0.10 e (K ₂ O) 0.10 e (K ₂ O) 0.10 s (K ₂ O) 0.10 S: assing) % 85 ea: assing) % 85 ea: assing) % 2500 days 70.2 average 7.2		34.05	***
(CaO) 1.19 (CaO) 37.2 (CaO) 37.2 (CaO) 37.2 (CaO) 37.2 (CaO) 37.2 (CaO) 37.2 (CaO) 3.6 (CaO) 3.6 (CaO) 0.1		13.35	
(CaO) 37.2 (MgO) 4.54 (S) 1.44 (SO ₃) 3.6 (L.O.I) 0 0 (Mn O) 2.92 (Mn O) 2.92 (Ma ₂ O) 0.10 (K ₂ O) 0.10 (K ₂ O) 3.95 (BaO) Test results series 85 (sing) % 85 (sing) % 85 (sing) % 2500 (ex,(%) 2.9 vity 2.9		1.19	
(S) 1.44 (SO ₃) 3.6 (LO.1) 0 0.0 (Mn O) 2.92 (Ma ₂ O) 0.10 (K ₂ O) 0.10 (K ₂ O) 0.10 (K ₂ O) 0.10 (K ₂ O) 0.250 sing) % 85 sing) % 85 singl % 85		37.2	
(SO ₃) 1.44 (SO ₃) 3.6 (L.O.I) 0 (Mn O) 2.92 (Ma ₂ O) 0.10 (K ₂ O) 0.10 (K ₂ O) 3.95 (BaO) Test results a: sing) % 85 sing) % 85 ex, (%) 2500 vity 2.9 ex, (%) 70.2 us	ဋ	4.54	
(SO ₂) 3.6 (L.O.1) 0 0 (Mn O) 2.92 (Na ₂ O) 0.10 (K ₂ O) 0.10 (K ₂ O) 3.95 (BaO) Test results certies 85 sing) % 85 sing) % 85 ex, (%) 2500 wity 2.9 ex, (%) 70.2		1.44	
(Kr.O.1) 0 2.92 (Mn O) 2.92 (Ma ₂ O) 0.10 (Kr ₂ O) 0.10 (Kr ₂ O) 0.10 (Kr ₂ O) 3.95 (Kr ₂ O) 3.95 (Kr ₂ O) 3.95 (Kr ₂ O) 3.95 (Kr ₂ O) (Kr		3.6	l
(Mn O) 2.92 (Na ₂ O) 0.4 (K ₂ O) 0.10 3.95 (BaO) Test results oerties 85 sing) % 85 a: sing) % 85 a: cx,(%) 70.2 by suppose 85.2	Ì	0	
ide (K ₂ O) 0.4 ide (K ₂ O) 0.10 3.95 : (BaO) Test results Froperties 85 ess: passing)% 85 area: 85 area: 0.00 Gravity 2.9 index,(%) 70.2 days 95.2		2.92	
ide (K ₂ O) 0.10 3.95 Properties Test results less: passing) % 85 area: (cn²/gm) 2500 Gravity 2.9 index, (%) 70.2 days		0.4	
(BaO) Test results serties Sing) % 85 a: ai. m²/gm) 2500 wity 2.9 wity 2.9 with 70.2 we serties 3.95	ide	0.10	
(BaO) Test results roperties 85 passing) % 85 rea: 2500 cm²/gm) 2500 Jiavity 2.9 7 days 70.2 days 95.2	1	3.95	
roperties Test results sss: sas: passing) % 85 passing) % 2500 cm²/gm) 2.9 jravity 2.9 ridex, (%) 7 days 95.2			
2500 2.9 70.2		Test results	ASTM C 989-89 limits
2500 2.9 70.2	2-Physical Properties		
2500 2500 2.9 70.2	-Fineness:		in the second se
2500 2.9 2.9 70.2 95.2	45um (passing) %	85	ı
2500 2.9 70.2	Surface area :		
70.2	Blaine (cm²/gm)	2500	
70.2	Specific Gravity	2.9	
ys 70.2 95.2	Slag activity index ,(%)		
95.2	at 7 days	70.2	Min. 70 % for grad 100
	at 28 days	95.2	Min. 90 % for grad 100

Table 2 Chemical analysis and physical properties of silica fume

Description of test	test results %	ASTM.limits
1- Chemical analysis		
Silicon Dioxide (SIO ₂)	26	
Aluminum Oxide (AL ₂ O ₃)	0.2	
Ferric Oxide (Fe ₂ O ₃)	0.5	
Calcium Oxide (CaO)	0.2	1
Magnesium Oxide (MgO)	0.5	
Sulfur Trioxide (SO ₃)	0.15	
Loss on ignition (L.O.I)	0.7	
Sodium Oxide (Na ₂ O)	0.2	
Potassium Oxide (K ₂ O)	0.5	
Total Carbon	0.5	*****
Chlorides	< 0.01	
2-physical properties		
-Fineness:		
45 um(passing) -%	99.75	
- Surface area:		
(by nitrogen adsorption method),		
cm²/gm	167000	
Specific Gravity	2.3	
The state of the s		

Table 3 The percentages of combinations of cement, GGBF and Silica fume.

	Mix no	OPC	GGBFslag	Silica fume
			, 00	/60
	Σ	100%	%0	070
Control mives	M2	50%	20%	%0
	M3	93%	%0	7%
	M4	20%	47%	3%
COOL Compat around	M5	20%	45%	2%
20 /0 Centent group	M6	20%	43%	7%
	M7	%09	37%	3%
Cook Comont groun	M8	%09	35%	2%
00 /0 Cement group	M9	%09	33%	7.10

100/0/0 \$0/50/0 \$3/0/7 \$\$\daggressys \$0/45/5 \$\$\daggressys \$0/33/7 Ordinary Portland Cement/GGBFslag/Silica fume compressive strength 3-days 3-days soundness Final setting time Initial setting time Types of cementitious-materials Water demand Percentage of cementitious- materials by weight Tests on pastes Compressive and mortars Ages - (days)

Fig. 1 Flow chart of test plan of paste and mortar mixtures

Fig. 2 Flow chart of test plan of concrete mixes for first test ser.

Table 4 The water demand of the various combinations of cementitious-materials paste

Mix	OPC/GGBF	Water			%Rate	of change	of water de	%Rate of change of water demand comparing to:	tring to:		
			M1	M2	Mi3	M4	MS	M6	M7	M8	M9
M1	100/0/0	26	%0	+8.3	-36.6	0	-7.1	-13.3	-10.3	-18.7	-25.7
M2	20/20/0	24	L'L-	%0	-41.5	1.7-	-14.3	-20	-17.2	-25	-31.4
M3	93/0/7	41	+57.7	+70.8	%0	+57.7	+46.4	+36.7	-41.4	+28.1	-17.1
M4	50/47/3	26	0	+8.3	9'96-	%0	-7.1	-13.3	-10.3	-18.7	-25.7
MS	50/45/5	28	1.7+	+16.6	-31.7	+7.7	%0	-6.7	-3.4	-12.5	-20
9¥4	50/43/7	30	+15.4	25	-26.8	+15.4	+7.1	%0	+3.4	-6.2	-14.3
MT.	60/37/3	29	+11.5	20.8	-29.3	+11.5	+3.6	-3.3	%0	-9.4	-17.1
M8	60/35/5	32	+23	+33.3	-21.9	+23.1	+14.3	-6.7	+10.3	%0	-8.6
M.9	60/33/7	35	+34.6	+45.8	-14.6	+34.6	+25	+16.7	+20.7	+9.4	%0
Egyp	Egyptian Standard	Min.25%									Annual Commence of the Commenc
S	Specifications	Max.30%									

Table 5 The initial setting time of the various combinations of cementitious-materials pastes

Mix	OPC/GGBF slag/SF	Initial		•	%Rate	of change	of initial se	%Rate of change of initial setting comparing to:	ring to:		
•		time(min.)									
			M1	M2	M3	M4	M5	Mf6	M7	M8	M9
M1	100/0/0	150	%0	-25	+87.5	-13.3	-3.2	5'6+	+3.4	+20	+42.9
M2	50/50/0	200	+33.3	%0	+150	15.6	+29	+46	+37.9	09+	+90.5
M3	93/0/7	80	-46.7	09-	%0	-53.7	48.4	41.6	-44.8	-36	-23.8
M4	50/47/3	173	+15.3	-13.5	+116.2	%0	+11.6	+26.3	+19.3	+38.4	+64.8
MS	50/45/5	155	+3.3	-22.5	+93.7	-10.4	%0	+13.1	6'9+	+24	+47.6
M6	50/43/7	137	-8.7	-31.5	+71.2	-20.8	-11.6	%0	-5.5	9.6+	+30.5
M7	60/37/3	145	-3.3	-27.5	+81.2	-16.2	-6.4	+5.8	%0	+16	+38.1
M8	60/35/5	125	-16.7	-37.5	+56.2	-27.7	-19.3	8.8-	-13.8	%0	+19
M9	60/33/7	105	-30	-47.5	+31.2	-39.3	-32.3	-23.3	-27.6	-16	%0
Egyp Sp	Egyptian Standard Specifications	Min.45min									

Table 6 The final setting time of the various combinations of cementitious-materials pastes

Mix	OPC/GG BFslag/SF	Final setting time		% ·	% Rate of change of final setting time comparing to	inge of fir	ıal settir	ig time c	omparin	ig to :	
	, ,	(min.)	M	M2	M3	MA	Me	79%	NGT	Mo	9%
MI	100/0/0	220	%0	-21.4	+57.1	-10.2	8 8	+15.8	+4.8	+18.9	+37.5
MZ	50/50/0	280	+27.3	%0	+100	+14.3	+25	+47.4	+33.3	+51.3	+75
M3	93/0/7	140	-36.4	-50	%0	42.9	-37.5	-26.3	-33.3	-24.3	-12.5
M4	50/47/3	245	+11.4	-12.5	+75	%0	+9.4	+28.9	+16.7	+32.4	+53.1
M.5	50/45/5	224	+1.8	-20	09+	-8.6	%0	+17.9	+6.7	+21.1	+40
M6	50/43/7	υ61	-13.6	-32.1	+35.7	-22.4	-15.2	%0	-9.5	+2.7	+18.7
M7	60/37/3	2.0	4.5	-25	+50	-14.3	-6.2	+10.5	%0	+13.5	+31.2
M8	60/35/5	185	-15.9	-33.9	+32.1	-24.5	-17.4	-2.6	-11.9	%0	+156
M9	60/33/7	160	-27.3	42.9	+14.3	-34.7	-28.6	-15.8	-23.8	-13.5	%0
Egypt Spe	Egyptian Standard Specifications	Max.10 hours									
	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I										

137

Table 7 The soundness of the various combinations of cementitious-materials pastes.

Mix	OPC/G	Soundness		٥	% Rate 0	% Rate of change of soundness comparing to:	of soundr	ess comp	aring to:		
	GBFslag /SF	(mm)									
			M1	M2	EDE	M.4	MS	M6	M7	M8	M69
M1	0/0/001	2	%0	-33.3	0	-33.3	0	0	-33.3	0	0
M2	20/20/0	3	+50	%0	+50	0	+50	+50	0	+50	+50
M.3	2/0/26	2	0	-33.3	%0	-33.3	0	0	-33.3	0	0
M4	50/47/3	3	+50	0	+50	%0	+50	+50	0	+50	+50
M5	50/45/5	2	0	-33.3	0	-33.3	%0	0	-33.3	0	0
M6	50/43/7	2	0	-33.3	0	-33.3	0	%0	-33.3	0	0
M.7	60/37/3	3	+50	0	05+	U	+50	+50	%0	+50	+50
M8	60/35/5	2	0	-33.3	0	-33.3	0	0	-33.3	%0	0
M9	60/33/7	2	0	-33.3	0	-33.3	0	0	-33.3	0	%0
3 3	Egyptian	Max. 10mm									
200	Standard										
Spec	Specifications										

Table 8 The 3day - compressive strength of the various combinations of cementitious materials mortars.

grace.

Mix	OPC/GGB	3day-		% R3	te of ch.	ange of (compress	sive stren	% Rate of change of compressive strength comparing to:	aring to:	
	F slag/SF	compressive strength (Ka/cm²)									
		(ma (5xx)	M1	M2	M3	M4	M5	M6	M7	M8	M9
MI	100/0/0	221.8	%0	+66.8	-2.3	+62.5	+57.5	+45.9	+50	+45.2	+31.6
M2	50/50/0	133	40	%0	-14.4	-2.6	-5.5	-12.5	-10.1	-13	-21.1
M3	93/0/7	22.7	+2.3	+70.7	%0	+66.3	+61.2	+49.3	+53.5	+48.6	+34.7
M4	50/47/3	136.5	-38.5	. +2.6	-39.9	%0	-3	-10.2	L'L-	-10.7	-19
115	-50/45/5	140.8	-36.5	+5.9	-38	+3.1	%0	-7.4	-4.8	-7.8	-16.4
M6	50/43/7	152	-31.5	+14.3	-33	+11.3	+7.9	%0	+2.8	-0.5	8.6-
M7	60/37/3	147.9	-33.3	+11.2	-34.8	+8.3	+5	-2.7	%0	-3.2	-12.2
M8	60/35/5	152.8	-31.1	+14.9	-32.7	+11.9	+8.5	+0.5	+3.3	%0	-9.3
M9	60/33/7	168.5	-24	+26.7	-25.8	+23.4	+19.7	+10.8	+13.9	+10.3	%0
Egypi	Egyptian Standard	Min. 180 Kg/cm ²									
Š	Specifications										

Table 9 The 7day -compressive strength of the various combinations of cementitious- materials mortars

					,	,		44	100000		
Mix	OPC/GGBF	7day-compressive		%Rate	of chang	%Rate of change of compressive strength comparing to:	pressive s	ırengun	compar	18 E	
	stag/SF	strengtn(Ng/cm2)					,	78.	7,677	Mo	MG
			M	Z	<u>X</u>	M4	CIM	2 <u>1</u> 2) III	STAT	
25.	100,000	3057	%0	+42.4	-8.7	+39.6	+37.4	+29.5	+33.3	+29.9	+17.6
WII	100/00	2,700	20.8	%)	-359	-2	-3.5	-9.1	-6.4	&. &.	-17.5
M.2	0/00/00	2.14.0	5,,,,		3	. 23	2 05	1410	+4K 1	+423	+288
M3	93/0/7	335	+9.6	+56.1	%0	+22	170.0	147:			
13%	5011717	219	-28.4	+2	-34.6	%	-1.6	-7.2	4.5	-1	-15.8
	2/24/02	200	27.2	+3.7	-33.6	+1.6	%0	-5.7	Ŀ	-5.5	-14.4
CIM	20/43/3	C-777			2 00	0 6	1 7	700	0 CT	+0.7	-9.2
M6	50/43/7	236	-22.8	0I+	-49.5	4/.0	10.1	2	,,,	,	
187	מוגעוטא	2963	-25	+6.8	-31.5	+4.7	+3.1	-2.8	%0	-2.6	-11.8
Ž.	27.5700	4 9 00	5	+07	207	+75	+5.8	-0.2	+2.7	%0	-9.5
W8	5/55/09	233.4	C7-		.,,			(1.12 4	7107	%00
M9	60/33/7	260	-14.9	+21.1	-22.4	+18.7	+10.8	+10.2	+1014	110.4	
Egyl	Egyptian Standard	Min.270 Kg/cm ²									
S	Specifications										